Copyright Statement

As a registered E-materials Service user of the ESMO 20th World Congress on Gastrointestinal Cancer in Barcelona, June 20th - 23rd 2018, you have been granted permission to access a copy of the presentation in the following pages for the purpose of scientific education. This presentation is copyrighted material and must not be copied, reproduced, transferred, distributed, leased, licenced, placed in a storage retrieval system, publicly performed or used in any way, except as specifically permitted in writing by presenter or, as allowed under the terms and conditions under which it was received or as permitted by applicable copyright law or rules of proper citation. Any unauthorised distribution or use of this presentation, a subset of it or graphic taken from the presentation may be a direct infringement of the presenter’s rights.
New agents/strategies on the horizon in bile duct cancer

Michel Ducreux
Gustave Roussy Cancer Campus
France
Epidemiology

BTC =

Intrahepatic BTC Mortality rates

In the US:
Gallbladder & extrahepatic BTC new cases = 10,910, Deaths = 3,700

BSC vs FUFOL vs GEMOX in gallbladder cancer

- Randomised monocentric study
- Non resectable or metastatic gallbladder cancer
- ECOG 0-2, age 18-70 years (median age : 50)

<table>
<thead>
<tr>
<th></th>
<th>BSC</th>
<th>FUFOL</th>
<th>GEMOX</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>27</td>
<td>28</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>ORR</td>
<td>0</td>
<td>14</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>PFS (months)</td>
<td>2.8</td>
<td>3.5</td>
<td>8.5</td>
<td><0.001</td>
</tr>
<tr>
<td>SG (months)</td>
<td>4.5</td>
<td>4.6</td>
<td>9.5</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Low response rates

GEM vs GEMCIS - UK-ABC 02 trial

ABC 01
Randomized phase II, 86 patients (ASCO GI 2006)
PFS: GEM-CDDP > GEM

ABC 02
Phase III, 324 pts, 34 centers
Main endpoint: overall survival
Locally advanced disease or metastatic, age ≥18 years, WHO 0-2

Stratification
- Stage
- Tumoral site
- General status WHO
- Centre

GEMCIS x 8
(GEM 1000 mg/m² J1-8 + CDDP 25 mg/m² J1-8, J1=J21)

GEM x 6
(GEM 1000 mg/m² J1-8-15, J1=J28)

JW Valle et al. NEJM 2010;362:1273-81
GEM vs GEMCIS UK-ABC 02
Overall survival

Hazard ratio for death,
0.64 (95% CI, 0.52–0.80)
P<0.001

<table>
<thead>
<tr>
<th>No. at Risk</th>
<th>Months since Randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemcitabine</td>
<td>206 151 97 53 28 15 4 3 2</td>
</tr>
<tr>
<td>Cisplatin–gemcitabine</td>
<td>204 167 120 76 51 28 17 8 2</td>
</tr>
</tbody>
</table>

JW Valle et al. NEJM 2010;362:1273-81
Gemcitabine + S-1 vs GEMCIS first line: same survival, less toxicity

Overall survival

<table>
<thead>
<tr>
<th></th>
<th>GEMCIS n=175</th>
<th>GEM-S1 n=179</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-year overall survival (IC 95%)</td>
<td>58.3% (50.6%-65.2%)</td>
<td>59.2% (51.6%-66.0%)</td>
</tr>
<tr>
<td>Median overall survival (IC 95%)</td>
<td>13.4 months (12.4-15.5)</td>
<td>15.1 months (12.2-16.4)</td>
</tr>
</tbody>
</table>

HR†: 0.945; IC 90%: 0.777 - 1.149
p non-inferiority = 0.0459 < 0.05

No. at risk

<table>
<thead>
<tr>
<th></th>
<th>GEMCIS</th>
<th>GEM-S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>175</td>
<td>179</td>
</tr>
<tr>
<td>6</td>
<td>151</td>
<td>159</td>
</tr>
<tr>
<td>12</td>
<td>102</td>
<td>106</td>
</tr>
<tr>
<td>18</td>
<td>53</td>
<td>71</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>36</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>48</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

M Ueno, et al., ASCO® 2018, Abs #4014
Targeted therapies: only one phase III study. No major improvement in RR

<table>
<thead>
<tr>
<th>Drug</th>
<th>Study</th>
<th>Phase</th>
<th>Line of Rx</th>
<th>No. of pts</th>
<th>RR (%)</th>
<th>Median PFS (mths)</th>
<th>Median OS (mths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase III study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEMOX + Erlotinib (A) vs. GEMOX (B)</td>
<td>Lee et al. [35]</td>
<td>III</td>
<td>1st</td>
<td>268</td>
<td>A: 30</td>
<td>A: 5.8</td>
<td>A: 9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B: 16</td>
<td>B: 4.2</td>
<td>B: 9.5</td>
</tr>
</tbody>
</table>

Randomized

<table>
<thead>
<tr>
<th>Drug</th>
<th>Study</th>
<th>Phase</th>
<th>Line of Rx</th>
<th>No. of pts</th>
<th>RR (%)</th>
<th>Median PFS (mths)</th>
<th>Median OS (mths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEMOX + Cetuximab (A) vs. GEMOX (B)</td>
<td>Malka et al. [36]</td>
<td>II</td>
<td>1st</td>
<td>150</td>
<td>A: 23</td>
<td>A: 6</td>
<td>A: 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B: 29</td>
<td>B: 5.3</td>
<td>B: 12.4</td>
</tr>
<tr>
<td>GEMOX + Cetuximab (A) vs. GEMOX (B)</td>
<td>Chen et al. [37]</td>
<td>II</td>
<td>1st</td>
<td>122</td>
<td>A: 27</td>
<td>A: 6.7</td>
<td>A: 10.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B: 15</td>
<td>B: 4.1</td>
<td>B: 9.8</td>
</tr>
</tbody>
</table>

Chong DQ and Zhu A Oncotarget 2016;7:46750-67
Targeted therapies: Anti-angiogenic?

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Authors [Ref]</th>
<th>Phase</th>
<th>Cycle</th>
<th>Duration</th>
<th>CR (%)</th>
<th>PR (%)</th>
<th>MRD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEMOX + Bevacizumab</td>
<td>Zhu et al. [39]</td>
<td>II</td>
<td>1st/2nd</td>
<td>35</td>
<td>40</td>
<td>7</td>
<td>12.7</td>
</tr>
<tr>
<td>Bevacizumab + Erlotinib</td>
<td>Lubner et al. [40]</td>
<td>II</td>
<td>1st</td>
<td>49</td>
<td>12</td>
<td>4.4</td>
<td>9.9</td>
</tr>
<tr>
<td>Gemcitabine + Capecitabine + Bevacizumab</td>
<td>Iyer et al. [41]</td>
<td>II</td>
<td>1st</td>
<td>50</td>
<td>72</td>
<td>8.1</td>
<td>11.3</td>
</tr>
<tr>
<td>Gemcitabine + Sorafenib (A) vs Gemcitabine (B)</td>
<td>Moehler et al. [44]</td>
<td>II</td>
<td>1st</td>
<td>102</td>
<td>A: 8 B: 6</td>
<td>A: 3 B: 4.9</td>
<td>A: 8.4 B: 11.2</td>
</tr>
<tr>
<td>Gemcitabine/ Cisplatin + Sorafenib</td>
<td>Lee et al. [46]</td>
<td>II</td>
<td>1st</td>
<td>39</td>
<td>NR</td>
<td>6.5</td>
<td>14.4</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>Yi et al. [47]</td>
<td>II</td>
<td>2nd</td>
<td>56</td>
<td>9</td>
<td>1.7</td>
<td>4.8</td>
</tr>
<tr>
<td>Gemcitabine/ cisplatin + Cediranib (A) vs Gemcitabine/ cisplatin (B)</td>
<td>Valle et al. [49]</td>
<td>II</td>
<td>1st</td>
<td>124</td>
<td>A: 44 B: 19</td>
<td>A: 8 B: 7.4</td>
<td>A: 14.1 B: 11.9</td>
</tr>
</tbody>
</table>

Chong DQ and Zhu A Oncotarget 2016;7:46750-67
Meta-analysis Gemox + ...

<table>
<thead>
<tr>
<th>Overall Survival (OS)</th>
<th>HR (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAb group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leone (2015)</td>
<td>0.83 (0.53, 1.30)</td>
<td>18.71</td>
</tr>
<tr>
<td>malka (2014)</td>
<td>1.05 (0.73, 1.50)</td>
<td>18.85</td>
</tr>
<tr>
<td>chen (2015)</td>
<td>0.87 (0.61, 1.25)</td>
<td>27.08</td>
</tr>
<tr>
<td>Subtotal (I-squared = 0.0%, p = 0.697)</td>
<td>0.91 (0.70, 1.12)</td>
<td>64.63</td>
</tr>
<tr>
<td>TKI group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lee (2012)</td>
<td>0.93 (0.69, 1.25)</td>
<td>35.37</td>
</tr>
<tr>
<td>Subtotal (I-squared = .%, p = .)</td>
<td>0.93 (0.65, 1.21)</td>
<td>35.37</td>
</tr>
<tr>
<td>Heterogeneity between groups: p = 0.912</td>
<td>0.92 (0.75, 1.08)</td>
<td>100.00</td>
</tr>
<tr>
<td>Overall (I-squared = 0.0%, p = 0.865)</td>
<td>P = 0.39</td>
<td></td>
</tr>
</tbody>
</table>

New drugs: Anti MEK:..Binimetinib

- Binimetinib (MEK162) selective oral MEK1/2 inhibitor,
- An expansion cohort study in patients who received ≤1 line of therapy for advanced BTC was conducted after determination of the MTD in a Phase 1 trial
- Binimetinib 60 mg twice daily.
- 28 patients
- 12 patients (43%) stable disease
- 2 objective responses (1 complete response, 1 partial response)
- Most patients (18/25; 72%) did not have KRAS, BRAF, NRAS, PI3KCA, or PTEN mutations

Finn RS et al. Invest New Drugs 2018, on line
Tribimetinib Another anti-MEK

20 refractory patients (1 line: 12, 2 lines: 8)

- 40% gallbladder
- 25% intrahepatic
- 30% bile duct, 5% ampulla of Vater
- No OR, stable disease: 65%
- Median PFS: 10.6 **weeks**
- One-year overall survival: 20%

Conclusion: **Prolonged PFS was observed in one patient having a specific biological pattern**

Pazopanib + trimetinib

25 refractory patients

- ECOG PS: 0 or 1
- Intrahepatic: 20%
- Perihilar or distal 80%
- Previous CT:
 - Median number of lines: 2
 - Range: 1 - 7

Schroff RT et al. Br J Cancer 2017:
A biologically heterogeneous disease

<table>
<thead>
<tr>
<th>Variables</th>
<th>IHCC (%)</th>
<th>EHCC (%)</th>
<th>GBC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosine kinase signaling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>4</td>
<td>3</td>
<td>4–18</td>
</tr>
<tr>
<td>HER2</td>
<td>1.5–3</td>
<td>11–18</td>
<td>10–16</td>
</tr>
<tr>
<td>KRAS</td>
<td>17–30</td>
<td>12–40</td>
<td>0–13</td>
</tr>
<tr>
<td>BRAF</td>
<td>4–7</td>
<td>3</td>
<td>1–6</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>5–6</td>
<td>7–9</td>
<td>8–14</td>
</tr>
<tr>
<td>FGFR2 fusions</td>
<td>6–50</td>
<td>0–5</td>
<td>0–3</td>
</tr>
<tr>
<td>IDH pathway</td>
<td>10–28</td>
<td>0–7</td>
<td>0</td>
</tr>
<tr>
<td>Chromatin-remodeling genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARID1A</td>
<td>17</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>BAP1</td>
<td>11</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>PBRM1</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
A biologically heterogeneous disease

INTRAHEPATIC
- KRAS
- FGFR2 fusions
- IDH1/2

EXTRAHEPATIC
- KRAS
- HER2

GALLBLADDER
- EGFR
- HER2
- PIK3CA
Targeted therapy and targeted population...BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma

BGJ398: Pan FGFR TKI
61 patients
- ECOG PS 1 or 2
- Prior antineoplastic reg.:
 - Median: 2, Range: 1 - ≥ 4
- **FGFR status**
 - FGFR1 amplified: 1
 - FGFR2
 - Amplified: 3
 - Mutated: 8
 - Fusion: 48
 - FGFR3 amplified: 4

IDH1-3 in intra-hepatic cholangiocarcinoma

- Mutant IDH inhibitors are tested
- The mutant forms of IDH1/2 catalyse the non-reversible accumulation of 2-hydroxyglutarate (2HG)

MOSCATO 01: molecular screening program

1. On Purpose Tumor Biopsy
2. Molecular Screening (NGS & CGH Array & RNAseq)
3. Clinical Decision
4. Treatment

Previous Therapy

Molecular Targeted Agent (MOSCATO)

Tumor Progression

> 25% of PFS 1

PFS 1 / PFS 2

> 1.3

Presented by: Antoine Hollebecque et al., ASCO 2013
Flow chart

Patients
N = 42

Biopsies
N = 47

Fit for analysis
N = 35

Druggable molecular aberration(s)
N = 25 (71%)

Treated
N = 18 (54%)

Since November 2011

No biopsy = 3
Ongoing = 2
Cellularity < 10% = 7

Verlingue L Eur J Cancer 2017;87:122-30
Pathway-based Enrichment analysis

GO molecular functions

- Transmembrane receptor TK
- Regulator protein kinase
- Phosphatases binding
- P53 binding
- PKC binding

ClueGO plugin

Verlingue L Eur J Cancer 2017;87:122-30
TCGA, even better...

489 cholangiocarcinoma from 10 countries

- Highest SNV burden
- Enriched in TP53, ARID1A, BRCA1/2 mutations
- Enriched in H3K27me3-associated promoter mutations

Enriched in TP53 mutations

- Enriched in BAP1 and IDH1/2 mutations
- Enriched in FGFR alterations

ERBB2 amplification

- Highest CNA burden
- 1p, 2p, 2q, 7p, 16p, 19q, 20q

Gene expression

- ERBB2
- TET1
- EZH2

CTNNB1, WNT5B, AKT1

- Immune-related pathways
- PD1, PD-L2 and BTLA

Gene expression

FGFR1, FGFR2, FGFR3, FGFR4

Methylation phenotype

- CpG Island
- Hypermethylated

CpG Shore
- Hypermethylated

Prognosis

- Poorer Prognosis
- Better Prognosis

Survival probability vs. Time in days

Cancer Discov. 2017; 7(10): 1116–1135
Results for efficacy

Mean PFS ratio = 2.1
IC95 [0.08 - 7.43]
PFS ratio > 1.3 = 58%
Results for efficacy

Best responses of evaluable patients

Orientated on:
- IHC
- NGS
- CGH
- RNAseq

Out before 1st evaluation
- Ongoing

Best Response (RECIST1.1, %)

Disease control = 60%
PR+CR = 27%

Molecular targets
- NOTCH4
- PTEN, LOH
- CDH1, 11q21/C
- MET, MTAP
- ALK, EML4
- PIK3C_H1047R
- PTEN, LOH
- PIK3CA, E33K
- INI1, H340X
- KIAA1549, D11S85
- FGFR1, C521A3
- EGFR, wt
- FGFR1, CC1R1
- ERPBB2, ErbB2
- NRAS, Q61R
- TP53, R175H
- ATM
- FGFR2

Verlingue L et al. TAT 2016

Permission by author to reuse slides
Another hope: immunotherapy?

Pembrolizumab: Keynote 028

<table>
<thead>
<tr>
<th>Primary tumor location, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biliary tract</td>
</tr>
<tr>
<td>Gallbladder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prior (neo)adjuvant therapy, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of lines of prior therapy for adjuvant therapy</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Change From Baseline, %

- Biliary Tract
- Gallbladder

Time, weeks

- ORR was 17.4% (95% CI, 5.0–38.8) (Table 2)

Bang Y-J et al ECCO 2015
Another hope: immunotherapy...

• Ramucirumab + pembrolizumab
 – Phase I trial
 – Ramucirumab 8 mg/kg Day 1 and Day 8
 – Pembrolizumab 200 mg day 1
 – 26 patients
 – ORR: 4%
 – Median PFS: 1.6 months
 – Median OS: 6.4 months

Arkenau HT et al The Oncologist 2018, on line
The true hope: the European project

UK: J Bridgewater, ABC10
France: D Malka
- Evaluate the role of personalized medicine in these patients
- Molecular screening

- Failure (15%, n = 111)
 - Tumor molecular profiling
 - 1L-SoC (e.g., CisGem) (3 months)
 - No PD (85%, n = 535)
 - Frequent alterations (40%, n = 214)
 - Experimental arm (n = 160)
 - Alt A
 - Alt B
 - Alt C
 - Continuation of 1L-SoC
 - Control arm (n = 54)
 - Alt Y
 - Alt Z
 - Continuation of 1L-SoC
 - Rare alterations (10%, n = 54)
 - Continuation of 1L-SoC
 - No alteration (50%, n = 267)
- ABC (n = 740)
- PD (15%, n = 94)
- Cross-over to Tx
- 2L-Tx
Recent strategy, adjuvant treatment: Bilcap

OS in the PP population

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median OS (95% CI)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capecitabine</td>
<td>52.7 months (40.3-NR)</td>
<td>0.75</td>
</tr>
<tr>
<td>Observation</td>
<td>36.1 months (29.6-44.2)</td>
<td>(0.58-0.97)</td>
</tr>
</tbody>
</table>

% of patients alive

Number at risk:
- Observation: 220
- Capecitabine: 210

Time since randomization (months):
- 0: 220, 210
- 12: 190, 190
- 24: 134, 152
- 36: 92, 105
- 48: 64, 83
- 60: 44, 56

Presented by Professor John Primrose

ASCO 2017 Annual Meeting
Liver transplantation as an adjuvant treatment

- Mayo Clinic ini
 - 71 patients selected
- 38 underwent neoadjuvant brachytherapy (capecitabine)
- 26 resection
- 28 unresectable disease

Figure 1. Patient survival from start of neoadjuvant therapy (all 71 patients in transplant protocol) or resection.
Conclusion

• Biliary tract cancer remains an aggressive tumour
• Standard of care in first line therapy is Gemcitabine + Cisplatine
• AntiFGFR and Anti IDH seem to be the best candidates for further development in this disease (but only for intra-hepatic disease)
• Immunotherapy has given some promising data
• Personalized medicine programs are helpful to select targeted therapy in these patients
• In adjuvant setting, capecitabine: new standard of care?
• Liver transplantation has to be evaluated in hilar resectable tumours